Advisory Committee

Prof. Ibrahim Nassar (Egypt)
Professor of synthetic organic chemistry
Faculty of Specific Education- Ain Shams University

Prof. Osama El Sayed (Egypt)
Professor of Nutrition & Dean of
Faculty of Specific Education- Ain Shams University

Prof. Etidal Hamdan (Kuwait)
Professor of Music & Head of the Music Department
The Higher Institute of Musical Arts – Kuwait

Prof. El-Sayed Bahnasy (Egypt)
Professor of Mass Communication
Faculty of Arts - Ain Shams University

Prof. Badr Al-Saleh (KSA)
Professor of Educational Technology
College of Education- King Saud University

Prof. Ramy Haddad (Jordan)
Professor of Music Education & Dean of the
College of Art and Design – University of Jordan

Prof. Rashid Al-Baghili (Kuwait)
Professor of Music & Dean of
The Higher Institute of Musical Arts – Kuwait

Prof. Sami Taya (Egypt)
Professor of Mass Communication
Faculty of Mass Communication - Cairo University

Prof. Suzan Al Qalini (Egypt)
Professor of Mass Communication
Faculty of Arts - Ain Shams University

Prof. Abdul Rahman Al-Shaer (KSA)
Professor of Educational and Communication Technology Naif University

Prof. Abdul Rahman Ghaleb (UAE)
Professor of Curriculum and Instruction – Teaching Technologies – United Arab Emirates University

Prof. Omar Aqel (KSA)
Professor of Special Education & Dean of
Community Service – College of Education
King Khalid University

Prof. Nasser Al-Buraq (KSA)
Professor of Media & Head od the Media Department
at King Saud University

Prof. Nasser Baden (Iraq)
Professor of Dramatic Music Techniques – College of
Fine Arts – University of Basra

Prof. Carolin Wilson (Canada)
Instructor at the Ontario institute for studies in education (OISE) at the university of Toronto and consultant to UNESCO

Prof. Nicos Souleles (Greece)
Multimedia and graphic arts, faculty member, Cyprus, university technology
سعادة أ. د. رئيس تحرير المجلة المصرية للدراسات المتخصصة المحترم
جامعة عين شمس، كلية التربية الابتدائية، القاهرة، مصر
تحية طيبة وود...

يسر محفل التأثير والاستشهادات المرجعية لمجلات العلوم العربية (ارسيف - ARCIF)، أحد مشاريع قاعدة بيانات "معركة" للnościات والمتinters.
النظام، إذ إعلانكم بأنه قد أُغاَض التقدير السنوي الثانى للمجلات لعام 2023.
وسوف نحن نعتمد لإعلان اليوم بين المحصلة المتخصصة المتاحة في جامعة عين شمس، كلية التربية الابتدائية، القاهرة، مصر، ونتبجة في
الموافقة في المشروع العالمي، والذي يبلغ عددها (32) معيالًا، وإلقاء على هذه المشاريع ميثاق الدخل
إلى الرابط التالي:

http://e-marefa.net/arcif/criteria

وكان معامل "ارسيف" في العام لـ2023 (0.3881)

كما منعت مراجعة تخصص العلوم الإلكترونية من إنجاز عدد المجلات (126) على المستوى العربي ضمن السنة (Q3)، وفي الوقت الذي، مع العلم أن
متوسط معامل "ارسيف" لـ2023 كان (0.511).

وإذا كان كاملا، فإن هذه النتائج سواء على مواقع المختلفة، أو على مواقع التواصل الاجتماعي، وكذلك المساهمة في النسخة الاكترونية المجلات إلى
مجلات "ارسيف" الخاص بالناشرين.

من جهودنا، تزويج في حال رغبكم الحصول على شهادة رسمية إلكترونية خاصة بناجحكم في مجال "ارسيف"، التواصل معنا مثلكون.

نلتفضوا بقبول فائق الاحترام والتقدير.

أ. د. سامي الخردي
رئيس مشاريع معامل المجلات
"ارسيف"
محتويات العدد

بحث علمية محكمة باللغة العربية:

* العلاج بالفن في التعليم الابتكاري
 ا.د/ مصطفى محمد عبد العزيز
 تصور مُقترح لتوظيف الوسائل التكنولوجية الحديثة في التدريس
 المندرج لمُقرر آلة العود بالمعهد العالي للفنون الموسيقية في دولة الكويت
 ا.م/ حمد غالب الفضلي

* فاعلية نظام تعليمي قائم على الذكاء الإصطناعي في تنمية مهارات إدارة التعلم الإلكتروني وخفض مستوى قلق المستقبل المهني لدى طلاب تكنولوجيا التعليم وكيفاً لمستوى إدارة الذات
 ا.م/ سعودي صالح عبد العليم حسن

* تتاحات الطلاب ذوى الاحتياجات الخاصة نحو ممارسة نشاط المسرح المدرسي
 ا.م/ عمرو محمد عبد الله نحلة

* ممارسة طلاب المرحلة الإعدادية والثانوية لأنشطة الإعلام التربوي وعلاقتها بتنمية المسؤولية الاجتماعية لديهم
 د/ دعاء محمد عبد المعبد شاهين

* فاعلية توظيف القيم اللفصية كنقطة جذب محورية في عناصر ديكور التصميم الداخلي (دراسة تجريبية)
 ا.م/ سمية عيسي

* البنية العاملية لمقياس الاندفاعية (UPPS-P) لدى طلاب الجامعة
 ا.د/ نادية السيد الحسيني

* آيمن حصافي عبد الصمد

أحمد عبد السلام على

بحث علمية محكمة باللغة الإنجليزية:

* Effects of Bidens Pilosa L Extract on Complete Blood Count and Serum Antioxidant Enzymes Levels in Rats

Dr. Batoul N.A. Mohammed
• The effect of some plants leaves and pomegranate peel on rats suffering from chronic liver disease

 Prof. Usama El-Sayed Mostafa
 Prof. Safaa Mostafa Abd Elfatah
 Eman Sayed Abd ElKhalek

• The Effect of Banana (Musaceae) and Onion (Allium cepa) on Diabetic Rats

 Prof. Naeem M. Raneh
 Prof. Eid Ali ZAki
 Mayada Said Mohamed
Effects of Bidens Pilosa L Extract on Complete Blood Count and Serum Antioxidant Enzymes Levels in Rats

Dr. Batoul N. A. Mohammed(1)

(1) Assistant Professor Home Department, Basic Education College the Public Authority for Applied Education and Training, Kuwait
Abstract
The aim of this study is to investigate the effects of Bidens Pilosa L extract (BPE) on complete blood picture and serum antioxidant enzymes level in rats by the dose of (3, 6 and 9ml orally/day). Thirty two male albino rats about (170±10g) were used in this study, and then divided into four equal groups each (8rats). The first one considers a control negative group that fed on a basal diet all the time during the experiment, the other groups (24 rats) was fed on a basal diet + the Oral doses of B. Pilosa for (4 weeks). Complete blood cells count levels (HB, HCT, RBCs and PLT) showed significant increases compared with the control group. WBCs showed a decrease. For antioxidant enzymes (SOD, CAT, GSH and GPx) were significantly increase comparing with control.

Keywords: IBidens Pilosa L , Red blood cells, Wight blood cells, Antioxidant enzymes, Hemoglobin

Dr. Batoul N. A. Mohammed
Introduction

Bidens Pilosa L. generally known as blackjack, hairy beggar-ticks and Spanish needle belonging to the family Asteraceae. It is a herbaceous medicinal plant domestic to South America that nowadays is widely world spread (Oliveira et al., 2004). *B. Pilosa* is an annual, erect herb growing up to 1.5 m tall with minutely hairy stems. It has yellow or white flower heads, and narrow long ribbed black seeds (Ashafa and Afolayan, 2009). In many countries of the world traditional medicines used different parts of *B. pilosa* in form of juice, decoction, powder, or taken orally have been reportedly used to treat hepatitis, inflammation, hypertension, stomach disorders, and digestive disorders (Bartolome et al., 2013 and Silva et al., 2014). Furthermore, the leaves are eaten as a vegetable (Odhav et al., 2007 and Orech et al., 2007). Studies of *B. pilosa* plant extracts have shown it has antidiabetic (Chien et al., 2009), antiulcerogenic (Alvarez et al., 1999), antitumor (Kviecinski et al., 2011), immunosuppressive and anti-inflammatory (Pereira, et al., 2020), antihypertensive (Leandre et al., 2008), anti-leukemic (Chang et al., 2001), antibacterial (Lawal et al., 2015), hepatoprotective (Yuan, et al., 2008; Kviecinski et al., 2011), and antioxidant (Krishnaiah et al., 2021) effects. *B. pilosa* is an remarkable source of phytochemicals and 201 compounds have so far been particular from this plant, including 70 aliphatics (36 polyynes), 60 flavonoids, 25 terpenoids, 13 aromatics, 8 porphyrins, 19 phenylpropanoids, and 6 other compounds (Silva et al., 2014). Phytochemical studies of *B. pilosa* L. leaf extract contains of many polyacetylenes, glycosides and flavonoids, (Hoffmann and Hölzl, 2019), essential oils and terpenes (Zollo et al., 1995) with anti-microbial and anti-inflammatory properties (Wong-Leung, 2018).

Anemia is a widespread nutritional deficiency disease and secular as a big health problem which that affects developed countries. According to the reports of WHO, one-third of the universal populations more than two billion are anemic because of the imbalance in their feed intake from nutritious (Shubham et al., 2020).
Plant medicines are integral therapy that uses a lot of plants to avoid disorders in various countries all over the world as therapeutic agents in traditional medicines (Kumar et al., 2012). But there is not enough review of the literature for their probable toxic and side effects, so we need more searches about this point (Monfared, 2013).

Therefore, this study proposes to evaluate the effects of the ethanolic extract of the *Bidens Pilosa* L extract (BP) on complete blood cells and serum antioxidant enzymes level in rats.

MATERIALS AND METHODS

Plant Material

Fresh leaves of *B. Pilosa* L. collected from the fields at El-Beheira Governorate. Leaves identified by Flora and Phytotaxonomy Researchers Department, belonging to Horticultural Research Institute, Agricultural Research Center.

Experimental Animals:

Thirty tow male albino rats about (170±10g) were purchased from the Animal House of the National Research Center, Dokki, Egypt.

Methods:

Preparation of Plant Extract:

Leaves of *B. Pilosa* were washed with running tap water and air dried. The air dried leaves were grinded into fine powder and kept in a tightly closed container at room temperature for further use. The extract was prepared by soaking 500 g of powdered *B. Pilosa* leaves in one liter of a solvent composed of 700 ml ethanol 95% and 300 ml distilled water at room temperature for 24 hours with stirring. The infusion was filtered by a piece of double layer gauze. The filtrates evaporated using a rotary evaporator at 40°C under vacuum (Muralidharan and Srikanth, 2009).
Chemical analysis:

Moisture content, total protein, fat, fiber, and ash were determined in dried powder of *B. Pilosa* leaves according to the methods outlined in *A.O.A.C* (2006), while the carbohydrates content will be calculated by difference.

Experimental Design:

Rats were fed on basal diet prepared according to *Reeves et al. (1993)* and water was provided ad libitum. Rats were left to accommodate for one week before experimental use. After the period of adaptation, the rats divided into equal 4 groups as follows: group (1) was kept as a control. Groups (2 to 4) were fed on basal diet for the prepared extract daily at doses of 3, 6, and 9 ml. At the end of the experiment time (four weeks) and after fasting for 12 h rats were sacrificed, blood samples were taken from the portal vein into clean and dry centrifuge tubes for serum separation, and blood samples were centrifuged for ten minutes at 3000 rpm. And serum had frozen at – 20 ºC until chemical analysis (*Drury and Wallington, 1980)*.

Biochemical Evaluation:

Hematological tests: were completed using Beckman coulter LH750 Germany/ U.S.A. - Determination of total leucocyte count (WBC): WBC (total and differential) was determined according to *KodaKimble et al., 2001*.

- Determination of differential count of white blood cells: WBC leukocytes are divided into two groups, the polymorph nuclear leukocytes (Neutrophils, Eosinophil's, and Basophils) and the Mononuclear Leukocytes (Monocytes and Lymphocyte). Leukocytes are a part of the body's defense system; they respond immediately to foreign invades by going to the site of involvement. The differential count of white blood cells was determined according to *Mathy and Koepke, 1974*.

- Hemoglobin, (Hb): Hemoglobin was determined in whole blood according to *Lewis and Dacie, 1965*.
- Red Blood Corpuscles count (RB C): R.B. Cs corpuscles were determined according to Lubsandorzhiev, (2006).
- Platelet Count Determination: Serum PLT was determined according to Daly, (2011).
- Determinations of hematocrits: Serum hematocrits were determined as % according to Purves et al., (2004).

Statistical Analysis:

Results will be presented as Mean ± SE. Data will be compared by oneway analysis of variance (ANOVA), followed by appropriate post hoc test, to determine the statistical significance of the difference using Statistical Package for the Social Sciences (SPSS), version 22. The values of p < 0.05 were regarded as statistically significant. (SAS, 2006)

Results:

Chemical Composition:

Data present in table (1) showed that, the leaves of B. Pilosa powder contains protein (28.91%), fats (1.22%), carbohydrate (32.22%), crude fibers (7.82%), moisture (11.87%) and ash (17.96%).

Table (1): The chemical composition of B. Pilosa leaves powder

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>11.87</td>
</tr>
<tr>
<td>Protein</td>
<td>28.91</td>
</tr>
<tr>
<td>Fat</td>
<td>1.22</td>
</tr>
<tr>
<td>Ash</td>
<td>17.96</td>
</tr>
<tr>
<td>Crude fibers</td>
<td>7.82</td>
</tr>
<tr>
<td>Total carbohydrate</td>
<td>32.22</td>
</tr>
</tbody>
</table>

Hemoglobin and Hematocrit of rats which received different levels of Bidens Pilosa extract Table (2) illustrates the effect of BP on hemoglobin and hematocrit levels of healthy rats. Tabulated data showed that there were significantly increase in mean values of HB and HCT of all treatments. It could be noticed that the highest values for HB and HCT were recorded
for group 4 (rats received 9ml BP) by the per cent of (26.05 and 38.74 respectively) compared with the control.

Table (2) Hemoglobin and Hematocrit of rats which received different levels of *Bidens Pilosa* extract

<table>
<thead>
<tr>
<th>Groups</th>
<th>HB (g/dl) Mean ± SD</th>
<th>% change of control</th>
<th>HCT (%) Mean ± SD</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.4 ± 0.11 d</td>
<td>--------</td>
<td>27.33 ± 0.1 d</td>
<td>--------</td>
</tr>
<tr>
<td>BPE (3ml)</td>
<td>10.71 ± 0.15 c</td>
<td>2.98</td>
<td>29.23 ± 0.33 c</td>
<td>06.95</td>
</tr>
<tr>
<td>BPE (6ml)</td>
<td>12.24 ± 0.75 b</td>
<td>17.69</td>
<td>34.25 ± 0.07 b</td>
<td>25.32</td>
</tr>
<tr>
<td>BPE (9ml)</td>
<td>13.11 ± 0.51 a</td>
<td>26.05</td>
<td>37.92 ± 0.16 a</td>
<td>38.74</td>
</tr>
<tr>
<td>LSD (p ≤ 0.05)</td>
<td>0.161</td>
<td>--------</td>
<td>0.327</td>
<td>--------</td>
</tr>
</tbody>
</table>

Means with different litters in the same column are significantly (p ≤ 0.05) different (Hemoglobin (HB) and Hematocrit (HCT))

Platelet (PLT), White Blood Cells (WBCs) and Red Blood Cells (RBCs) (cm) of rats which received different dosages of *Bidens Pilosa* extract.

Table (3): The effect of different dosages of *Bidens Pilosa* extract on Platelet (PLT), Wight Blood Cells (WBC) and Red Blood Cells (RBC) (cm)

<table>
<thead>
<tr>
<th>Groups</th>
<th>PLT (103 cm) Mean ± SD</th>
<th>% change of control</th>
<th>WBC (103 cm) Mean ± SD</th>
<th>% change of control</th>
<th>RBC (106 cm) Mean ± SD</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>563.33 ±1.66 d</td>
<td>------</td>
<td>11.35 ± 0.08 d</td>
<td>------</td>
<td>3.12 ± 0.71 d</td>
<td>------</td>
</tr>
<tr>
<td>BPE (3ml)</td>
<td>671.33 ± 3.15 c</td>
<td>19.17</td>
<td>10.58 ± 0.03 c</td>
<td>- 9.32</td>
<td>3.96 ± 0.22 c</td>
<td>26.92</td>
</tr>
<tr>
<td>BPE (6ml)</td>
<td>697.33 ± 3.74 b</td>
<td>23.78</td>
<td>9.77 ± 0.11 b</td>
<td>- 8.60</td>
<td>4.48 ± 0.06 b</td>
<td>43.58</td>
</tr>
<tr>
<td>BPE (9ml)</td>
<td>742.33 ± 3.09 a</td>
<td>31.77</td>
<td>7.95 ± 0.17 a</td>
<td>- 7.00</td>
<td>5.15 ± 0.33 a</td>
<td>65.06</td>
</tr>
<tr>
<td>LSD (p ≤ 0.05)</td>
<td>6.055</td>
<td>------</td>
<td>0.163</td>
<td>------</td>
<td>0.497</td>
<td>------</td>
</tr>
</tbody>
</table>

Means with different litters in the same column are significantly (p ≤ 0.05) different.

Table (3) illustrates the effect of different dosages on (PLT), (WBCs) and (RBCs) (cm) of healthy rats. Data illustrated that there were significant increases in values of PLT and RBCs of all treated groups compared to the control. The highest value was for group 4 (rats received 9cm BPE) by the percent of the increase (31.77 and 65.06% For PLT and RBC, respectively) compared with the control, For WBCs, it could be observed a significant decrease in the mean values of all treated groups. The lowest value was for group 3 (rats received 6ml BPE) compared with the control.
Table (3) showed the effect of BPE on SOD and CAT of healthy rats. Superoxide Dismutase (SOD u/ml) and Catalase (CAT ng/ml) of rats that received different dosages of Bidens Pilosa extract. For (SOD) data showed increases in mean values of all treatments compared with control without any significant differences except for group (4) which was increased by the percent of 11.49% the lowest value was for the group (2) which was increased by the percent of 0.30%. For CAT, there were significantly higher means of CAT of all treated groups as compared with the control. The highest value was for the group (4) by the percent of the increase (50.35%) as compared with the control, and the lowest value was for the group (2) by the percent (13.82%).

Table (4): The effect of different dosages of Bidens Pilosa extract on Superoxide Dismutase (SOD) and Catalase (CAT ng/ml)

<table>
<thead>
<tr>
<th>Groups</th>
<th>SOD (u/ml) Mean ± SD</th>
<th>% change of control</th>
<th>CAT (ng/ml) Mean ± SD</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>141.6 ± 0.11 c</td>
<td>-------------------</td>
<td>2.82 ± 0.21 d</td>
<td>-------------------</td>
</tr>
<tr>
<td>BPE (3ml)</td>
<td>142.03 ± 0.52 c</td>
<td>0.30</td>
<td>3.21 ± 0.11 c</td>
<td>13.82</td>
</tr>
<tr>
<td>BPE (6ml)</td>
<td>143.75 ± 0.89 b</td>
<td>1.01</td>
<td>3.57 ± 0.32 b</td>
<td>26.59</td>
</tr>
<tr>
<td>BPE (9ml)</td>
<td>157.88 ± 2.65 a</td>
<td>11.49</td>
<td>4.24 ± 0.31 a</td>
<td>50.35</td>
</tr>
</tbody>
</table>

LSD (p ≤ 0.05) 25.13 0.186

Means with different litters in the same column are significantly (p ≤ 0.05) different.

Table (5) showed the effect of BPE diet on the GSH and GPx of healthy rats. Glutathione (GSH u/ml) and Glutathione Peroxidase (GPx ng/ml) of rats which received different dosages of Bidens Pilosa extract. The obtained data illustrated a significantly higher in means of GSH and GPx of all treatments except group (2) of GSH which showed a significant decrease compared with a significant. The highest value was for group 4 (rats received 9ml BPE) by the percent of the increase (14.54 and 15.53% respectively) compared with the control lowest value was for group 2 (rats received 2 ml BPE by the percent of 1.10 and 5.17% respectively) comparing with the control.
Table (5): The effect of different dosages of *Bidens Pilosa* extract on Glutathione (GSH) and Glutathione Peroxidase (GPx)

<table>
<thead>
<tr>
<th>Groups</th>
<th>GSH (ng /ml) Mean ± SD</th>
<th>% change of control</th>
<th>GPx (ng /ml) Mean ± SD</th>
<th>% change of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>118.03 ± 0.07 c</td>
<td>--</td>
<td>121.07 ± 0.16 d</td>
<td>--</td>
</tr>
<tr>
<td>BPE (3ml)</td>
<td>119.33 ± 0.14 c</td>
<td>1.10</td>
<td>127.33 ± 1.31 c</td>
<td>5.17</td>
</tr>
<tr>
<td>BPE (6ml)</td>
<td>127.93 ± 0.41 b</td>
<td>8.38</td>
<td>133.15 ± 1.02 b</td>
<td>9.97</td>
</tr>
<tr>
<td>BPE (9ml)</td>
<td>135.2 ± 0.16 a</td>
<td>14.54</td>
<td>139.88 ± 1.52 a</td>
<td>15.53</td>
</tr>
<tr>
<td>LSD (p ≤ 0.05)</td>
<td>0.513</td>
<td>--</td>
<td>3.264</td>
<td>--</td>
</tr>
</tbody>
</table>

Means with different litters in the same column are significantly (p ≤ 0.05) different.

Discussion

In this study the current results was similar to that reported by Deba et. al. (2008) whom found the same chemical composition of *B. Pilosa* leaves powder. Supplemented rats with BPE for 28 days cussed some improvement in most haematological parameters. Significant increases for RBCs and platelets count were observed. Trivial increases were observed increase was observed for HB. These results was found to be in the same line with Al-Said et al., (2011) who found that oral dosages (250 and 500 mg/kg/rat) of ethanol extract of Bidens Pilosa for 3 weeks increased haemoglobin levels significantly. And this may be due to the amounts of iron and amino acids in different species of *B. pilosa* (Mohammed Elhassan and Yagi, 2010)

The antioxidant effect of Bidens pilosa extract could be attributed to the presence of its phytochemical constituents as polyacetylenes, polyacetylenic glycosides, aurons, aurons glycosides, flavonoids and flavonoid glycosides (Ibrahim et al.,2023). The antioxidant effect of B. pilosa extract in this study was similar to those obtained by Repetto and Llesuy (2002); Deba et. al. (2008); Krishnaiah et. al. (2011) and Kviecinskiet et. al., (2011).

Compounds with molecules capable of scavenging or reducing high ROS/RNS and free radicals would be of health benefit in managing illnesses such as cancer, diabetes, heart disease, neurodegenerative diseases, and ageing (Saibabu et al., 2015). *B. pilosa* could offer these benefits because of its
high polyphenols (an antioxidant) ranging from 15.66 to 20.19 mg GAE/g in the water extract and from 30.86 to 32.52 mg GAE/g for the ethanol extract, with a subclass of 54% and 42% phenolic acid, respectively (Cortés-Rojas et al., 2013).

In addendum, it was indicated that different dosages of *Bidens Pilosa* extract fruit for four weeks cussed significantly lower PLT count. Also, the same observation has been related to some herbal medicine (Cheesbrough, 2005). Significant increases in the PLT count and mega karyocytes observed in rats that received an aqueous extract of *Bidens Pilosa* for one week (Deutsch and Tomer, 2006). Supporting with ethanolic extract (E.X) of *Bidens Pilosa* makes improvement in Hb, RBCs and PCV compared with mice which received formalin only. Also, amelioration in PLT count was observed. The improvement in most haematological parameters of groups treated with *Bidens Pilosa* may be due to the antioxidant contents in the extract. Supplementation with *Bidens Pilosa* extract improved the levels of haemoglobin in rats. These obtained results support the main use of *Bidens Pilosa* ethanol extract fruits with the exception of anaemic conditions (Al-Said et al., 2011). Antioxidant compounds of different species of *Bidens Pilosa* are known to initiate the oxidative effects (Ramesh et al., 2010).

Conclusion

Bidens Pilosa plant extract examined in this study has an effective and improved CBC analysis and antioxidant enzymes. The obtained results supported the suppositions that this plant has a lot of bioactive compounds which are able to promote blood parameters. So, authors recommended more interest and consumption of *Bidens Pilosa* plant as an (9ml) extract in our diets.

References

- **A.O.A.C. International (2006):** Official Methods of Analysis of AOAC International. 18th Ed, Rev.1, Gaithersburg, Maryland, USA. Chap., 3: 45.
- **Ibrahim S. Salem; Inas Z. Abudo Abdallah; Hala A. E. Ciam (2023):** Gastroprotective Effect of Bidens pilosa L. Leaves against Indomethacin-Induced Gastric Ulceration in Rats. The Egyptian Journal of Hospital Medicine (July 2023) Vol. 92, Page 6028-6032.
Effects of Bidens Pilosa L Extract on Complete Blood...

المجلة المصرية للدراسات المتخصصة

الهيئة الاستشارية للمجلة
أ/ د/ إبراهيم فتحي نصار (مصر)
استاذ التربية التعليمية - نائباً رئيساً للمجلس التعليمي
أ/ د/ أسامة السيد مصطفى (مصر)
استاذ التربية وعميد كلية التربية - جامعتين
أ/ د/ بغرة عبد الحديث جهان (كويت)
استاذ الموسيقى ورئيس قسم الموسيقى بكلية الآداب - جامعة الكويت
أ/ د/ أسامة بنيسي حسين (مصر)
استاذ اللغة العربية وعميد كلية الآداب - جامعتين
أ/ د/ نادر عبد الله الصالح (المغرب)
استاذ تكنولوجيا التعليم طلاب كليات الموسيقى - جامعة الملك عبد الله
أ/ د/ مصطفى نجيب حداد (السعودية)
استاذ التربية الإسلامية وعميد كلية الفنون والتصميم - جامعة الأردن
أ/ د/ رفيق باي فالي (الكويت)
استاذ الموسيقى ورئيس قسم الموسيقى بكلية الآداب - جامعة الكويت
أ/ د/ سامي عبد الروؤف طالب (مصر)
استاذ التربية الإسلامية - جامعة القاهره
أ/ د/ نزار الغانمي (السعودية)
رئيس جامعة الامام علی بن عثمان
أ/ د/ عبد الرحمن إبراهيم الشاعر (السعودية)
استاذ تكنولوجيا التعليم والاتصال - جامعة المكلا
أ/ د/ عبد الرحمن غلبان الخلافي (المغرب)
استاذ مناهج وطرق تدريس التصوير - جامعة الامام علی بن عثمان
أ/ د/ عمر عوين عقيل (المغرب)
استاذ التربية الإسلامية - جامعة الامام علی بن عثمان
أ/ د/ فوزي ناصر نافع البراق (المغرب)
استاذ اللغة العربية - جامعة الامام علی بن عثمان
أ/ د/ ناصر هاشم بن مهاجر (المغرب)
استاذ تكنولوجيا المعلومات - جامعة الامام علی بن عثمان

Prof. Carolin Wilson (Canada)
Instructor at the Ontario institute for studies in education (OISE) at the university of Toronto and consultant to UNESCO

Prof. Nicos Souleles (Greece)
Multimedia and graphic arts, faculty member, Cyprus, university technology

Prof. Nicos Souleles (Greece)
Multimedia and graphic arts, faculty member, Cyprus, university technology

الدورة عملية محكمة - تصدرها كلية التربية النوعية - جامعة عين شمس

المجلة المتخصصة

رئيس مجلس الإدارة
أ/ د/ أسامة السيد مصطفى
نائب رئيس مجلس الإدارة
أ/ د/ د.نايف حسن فهمي
رئيس التحرير
أ/ د/ إيمان سيد علي

أ/ د/ محمود حسن اسماعيل (مصر)
أ/ د/ محمد فرج (مصر)
أ/ د/ محمد عبد الوهاب العلالي (المغرب)
أ/ د/ محمد بن حسن الضبيحي (المغرب)
أ/ د/ أحمد محمد نجيب

استاذ الموسيقى

أ/ د/ محمد عامر محمد عبد الباقى
أ/ د/ علي أشرف
أ/ د/ محمد عبد السلام

المجلة تنشر المقالات باسم الأستاذ الدكتور/ رئيس التحرير، على العنوان التالي:
365 ش رمسي - كلية التربية النوعية - جامعة عين شمس ت/402688594

الرقم الدولي المجوز للطباعة : 6164 - 1687 - 4353
الرقم الدولي المجوز الاكتروني : 2682 - 4353

الموقع الرسمي:
https://egjs.journals.ekb.eg

البريد الإلكتروني:
egyjournal@sedu.asu.edu.eg

الترقيم الدولي المجوز للطباعة : (7) نقاط
الترقيم الدولي المجوز الاكتروني : 0.3881 (أكتوبر 2022)

المجلد (12)،العدد (42)،الجزء الثالث

إبريل 2024

(3) الأسماء مرتبتة ترتيباً ابجدياً.