

Egyption

Journal

For Specialized Studies

Quarterly Published by Faculty of Specific Education, Ain Shams University

Board Chairman

Prof. Osama El Sayed

Vice Board Chairman

Prof. Dalia Hussein Fahmy

Editor in Chief

Dr. Eman Sayed Ali
Editorial Board

Prof. Mahmoud Ismail

Prof. Ajaj Selim

Prof. Mohammed Farag Prof. Mohammed Al-Alali

Prof. Mohammed Al-Duwaihi

Technical Editor

Dr. Ahmed M. Nageib

Editorial Secretary

Laila Ashraf

Usama Edward

Osama Edward

Zeinab Wael

Mohammed Abd El-Salam

Correspondence:

Editor in Chief 365 Ramses St- Ain Shams University, Faculty of Specific Education **Tel**: 02/26844594

Web Site:

https://ejos.journals.ekb.eg

Email:

egyjournal@sedu.asu.edu.eg

ISBN: 1687 - 6164 ISNN: 4353 - 2682

Evaluation (July 2025) : (7) Point Arcif Analytics (Oct 2024) : (0.4167) VOL (13) N (48) P (5) October 2025

Advisory Committee

Prof. Ibrahim Nassar (Egypt)

Professor of synthetic organic chemistry Faculty of Specific Education- Ain Shams University

Prof. Osama El Sayed (Egypt)

Professor of Nutrition & Dean of Faculty of Specific Education- Ain Shams University

Prof. Etidal Hamdan (Kuwait)

Professor of Music & Head of the Music Department The Higher Institute of Musical Arts – Kuwait

Prof. El-Sayed Bahnasy (Egypt)

Professor of Mass Communication Faculty of Arts - Ain Shams University

Prof. Badr Al-Saleh (KSA)

Professor of Educational Technology College of Education- King Saud University

Prof. Ramy Haddad (Jordan)

Professor of Music Education & Dean of the College of Art and Design – University of Jordan

Prof. Rashid Al-Baghili (Kuwait)

Professor of Music & Dean of The Higher Institute of Musical Arts – Kuwait

Prof. Sami Taya (Egypt)

Professor of Mass Communication
Faculty of Mass Communication - Cairo University

Prof. Suzan Al Oalini (Egypt)

Professor of Mass Communication Faculty of Arts - Ain Shams University

Prof. Abdul Rahman Al-Shaer

KSA)

Professor of Educational and Communication Technology Naif University

Prof. Abdul Rahman Ghaleb (UAE)

Professor of Curriculum and Instruction – Teaching Technologies – United Arab Emirates University

Prof. Omar Ageel (KSA)

Professor of Special Education & Dean of Community Service – College of Education King Khaild University

Prof. Nasser Al- Buraq (KSA)

Professor of Media & Head od the Media Department at King Saud University

Prof. Nasser Baden (Iraq)

Professor of Dramatic Music Techniques – College of Fine Arts – University of Basra

Prof. Carolin Wilson (Canada)

Instructor at the Ontario institute for studies in education (OISE) at the university of Toronto and consultant to UNESCO

Prof. Nicos Souleles (Greece)

Multimedia and graphic arts, faculty member, Cyprus, university technology

الصفحة الرئيسية

نقاظ المجله	السته	ISSN-O	ISSN-P	اسم الجهه / الجامعة	اسم المجلة	القطاع	٩
7	2025	2682-4353	1687-6164	جامعة عين شمس، كلية التربية النوعية	المجلة المصرية للنراسات المتخصصة	Multidisciplinary علم	1

معامل التأثير والاستشهادات المرجعية العربي Arab Citation & Impact Factor قاعدة البيانات العربية الرقمية

التاريخ: 2024/10/20 الرقم: L24/0228 ARCIF

سعادة أ. د. رئيس تحرير المجلة المصرية للدراسات المتخصصة المحترم

جامعة عين شمس، كلية التربية النوعية، القاهرة، مصر

تحية طيبة وبعد،،،

يسر معامل التأثير والاستشهادات المرجعية للمجلات العلمية العربية (ارسيف - ARCIF)، أحد مبادرات قاعدة بيانات "معرفة" للإنتاج والمحتوى العلمي، إعلامكم بأنه قد أطلق التقرير السنوي التاسع للمجلات للعام 2024.

ويسرنا تهنئتكم وإعلامكم بأن المجلة المصرية للدراسات المتخصصة الصادرة عن جامعة عين شمس، كلية التربية النوعية، القاهرة، مصر، قد نجحت في تحقيق معايير اعتماد معامل الرسيف Arcif" المتوافقة مع المعايير العالمية، والتي يبلغ عددها (32) معياراً، وللاطلاع على هذه المعايير يمكنكم الدخول إلى الرابط التالي: http://e-marefa.net/arcif/criteria/

وكان معامل "ارسيف Arcif " العام لمجاتكم لمنة 2024 (0.4167).

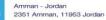
كما صنفت مجلتكم في تخصص العلوم التربوية من إجمالي عدد المجلات (127) على المستوى العربي ضمن الغنة (Q3) وهي الغنة الوسطى ، مع العلم أن متوسط معامل "ارسيف" لهذا التخصص كان (0.649).

وبإمكانكم الإعلان عن هذه النتيجة سواء على موقعكم الإلكتروني، أو على مواقع التواصل الاجتماعي، وكذلك الإشارة في النسخة الورقية لمجلتكم إلى معامل "ارسيف Arcif" الخاص بمجلتكم.

ختاماً، نرجو في حال رغبتكم الحصول على شهادة رسمية إلكترونية خاصة بنجاحكم في معامل " ارسيف "، التواصل معنا مشكورين.

وتفضلوا بقبول فائق الاحترام والتقدير

أ.د. سامي الخزندار رئيس مبادرة معامل التأثير "Arcif ارسيف



محتويات العدد

أولاً: بحوث علمية محكمة باللغة العربية:

1 2 7 1	بنائيات خراطية رؤية تشكيلية خشبية معاصرة مستوحاه من التراث الأسلامي	•
1211	ا.م.د/ أشرف محمود محمد الأعصر	
	جماليات الإيقاع لعناصر من الطبيعة كمدخل لإثراء المشغولة	•
1 2 1	المعدنية المعاصرة	

د/ أمل ممدوح عزوز عبد المجيد

• الدلالات الرمزية لجماليات واجهات المباني التراثية الكويتية كمدخل لبنائية اللوحة الزخرفية لدى طالبات التربية الأساسية

ا.م.د/ عبد الرحمن فؤاد محمد الشراح ١٥٠٣ ا.م.د/ خالد الهيلم زومان العازمي ا.م.د/ محمود محمد السعيد متولي

ملامح العلاقات السامة و آليات التلاعب في مسرح بهيج إسماعيل مسرحية 'حلم يوسف' نموذجاً

ا.م.د/ أمانى جميل على العطار

1071

• تقييم المنصات التعليمية الإلكترونية لتعليم آلة الكمان المنصور محمد المنصور المنصور محمد المنصور

• أسلوب أداء ثنائي القطط الكوميدي Duetto buffo di due 17.9 Gioachino Rossini لجواتشينو روسيني gatti د/ أماني رأفت السعيد

 الهوية المصرية بعد الحداثة في مؤلفتي البيانو "الفراشة" عند فتحية محمد فايد و "الوطن مُصنف ٣٣" عند علي حسين النجار د/ هائي محمد جمال الدين محمد

• تدريبات مقترحة لتعليم تقنيات الأداء علي آلة الكمان للطالب المبتدئ من خلال فيلم Tangled لآلان مينكين

ا.د/ أحمد سالم إبراهيم ١٦٨٥ ا.م.د/ مروة عمرو عبد المنعم ا/ نورهان محمد أحمد شمروخ

الاندارزية	كمة باللغة	عامامام	ر حو رش	: ثانداً
رم حجير ب-		حسب حد	بحر	

•	Digital Media Strategies in Marketing: Insights	
	from Egyptian Industry Professionals	39
	A. Prof. Sally Samy Tayie	
•	Effect Of Gymnema sylvestre and Emblica	
	officinalis Leaves On Oxidative stress In	
	Expermental Rats	79
	A. Prof. Gehan I. AbdelWahab	

Effect Of Gymnema sylvestre and Emblica officinalis Leaves On Oxidative stress In Expermental Rats

A.Prof. Gehan I. AbdelWahab (1)

⁽¹⁾ Assistant Professor Nutrition and Food Science, Home Economic Dept. Faculty Of Specific Education, Ain Shames University

Effect Of Gymnema sylvestre and Emblica officinalis Leaves On Oxidative stress In Expermental Rats

A. Prof. Gehan I. AbdelWahab

Abstract

This study investigated the effects of Gymnema sylvestre (GS) and Phyllanthus emblica (PE) leaves on oxidative stress in experimental rats. Thirty male albino rats were divided into five groups: negative control (healthy), positive control (received 1–2 mL/kg body weight of CCl4 (diluted 1:1 in olive oil) administered via intraperitoneal (i.p.) injection, 10% GS-treated, 10% PE-treated, and a mixture group (5% GS + 5% PE). Biochemical, histological, and oxidative stress parameters were evaluated after 8 weeks. The mixture group showed the highest BWG (38.75%), surpassing individual treatments (GS: 38.35%; PE: 32.69%) and positive control (10.73%). The mixture group normalized AST (89.81 U/L), ALT (43.62 U/L), bilirubin (0.30 g/dl), and total protein (7.11 g/dl), outperforming individual extracts

Keywords: Gymnema sylvestre, Emblica officindis, Oxidative stress, Antioxidant activity,rats,liver function,kidney functions, Carbon tetrachloride(CCL4)

ملخص:

العنوان: تاثير اوراق جيمنيما سيلفستر والإمبليكا أوفيسيناليس على الاجهاد التاكسندي في فئران التجارب

المؤلفون: جيهان إبراهيم عبد الوهاب

بحثت هذة الدراسة في تأثير اوراق(GS) Gymnema sylvestre (GS) على الاجهاد التأكسدي لدى فئران التجارب. قسم ثلاثون فأرا ذكرا من الفئران البيضاء الى خمس مجموعات:مجموعة المتحكم السلبيبة(السليمة) و مجموعة المتحكم الايجابية (اجهاد تأكسدي مستحث برابع كلوريد الكربون) ومجموعة معالجة ب 10% من ,GSومجموعة معالجة ب 10% من مستحث برابع كلوريد الكربون) ومجموعة معالجة ب 10% من المعايير الكيميائية الحيوية والنسيجية ومستوى PE و مجموعة مغلطة (5% من (,GS) + 5%PE) العهسرت PE التعاسيبة دهسون اعلسي 19.95 الاجهساد التأكسدي بعسد 8 اسسلبيع اظهسرت PE (345.73 mg GAE/g) واظهرت المجموعة المختلطة اعلى نسبة BWG (,GS: 38.35%; PE: 32.69%) والستحكم (,GS: 38.35%) والستحكم (,GS: 38.35%) والستحكم الايجابي. (,GS: 38.35%) والمعالجسات الفرديسة ,GSE (,GSE) المعالجسات الفرديسة (,GSE) (,GSE) المعالجسات الفرديسة (,GSE) (,GSE) المعالجسات الفرديسة (,GSE) المعالجسات الفرديسة (,GSE) المعالجسات الفرديسة (,GSE) المعالجسات الفرديسة (,GSE) المعالجسات المنفردة بذلك على المستخلصات المنفردة

الكلمات الدالة: اوراق جيمنيما سيلفستر ، الإمبليكا أوفيسيناليس ، الاجهاد التاكسندي

Introduction

Natural phytochemicals, particularly those with antioxidant and anti-inflammatory properties, have emerged as promising adjuvants to counteract drug-induced nephrotoxicity (Al-Kuraishy et al., 2021). *Gymnema sylvestre* (GS), a traditional Ayurvedic herb, is renowned for its antidiabetic and antioxidant activities, attributed to bioactive compounds such as gymnemic acids and flavonoids (Khan et al., 2018). Similarly, *Emblica officinalis* (Amla), a rich source of vitamin C, phenolic acids, and tannins, exhibits potent free radical-scavenging and hepatorenal protective effects (Variya et al., 2016). Both plants are hypothesized to attenuate oxidative stress—a key mechanism underlyingccl4-induced renal injury—by enhancing endogenous antioxidant defenses (e.g., glutathione, catalase) and reducing lipid peroxidation (MDA levels) (Prasad et al., 2020).

Despite their individual therapeutic potential, the synergistic nephroprotective effects of CCL4 and amla remain underexplored. Previous studies have focused on single-plant interventions, leaving a gap in understanding combinatorial phytotherapy (Sultana et al., 2020). This study investigates the hypothesis that co-administration of CCL4 and amla enhances renal protection against CCL4 induced toxicity more effectively than either plant alone, leveraging their complementary bioactive profiles.

To test this, we evaluated biochemical markers (serum creatinine, urea, uric acid), oxidative stress parameters (GSH, catalase, MDA), and histopathological changes in ccl4-treated rats. Additionally, proximate composition and phytochemical analyses (total phenolics, flavonoids) of the plant powders were conducted to correlate their nutraceutical profiles with observed biological effects. By integrating these approaches, this work advances the potential of GS and amla as cost-effective, natural adjuvants to reduce the nephrotoxic burden of aminoglycoside therapy.

Materials and Methods

Materials

Phyllanthus emblica Linn. (amla) and Gymnema sylvestre powder were obtained from Haraze company in Egypt. The kits used for analysis were obtained from Bio-diagnostic Co. Dokki, Egypt. CCL4 was obtained from El-Gomhoreya Co., Cairo, Egypt.

Analytical methods

Chemical composition

Moisture, protein, fat, crude fiber and ash were determined according to the method of **AOAC**, (2018), and the carbohydrate content was calculated by difference. Total carbohydrates = 100 -(moisture + protein + fat+ fiber + ash). All determinations were made in triplicate.

Estimation of total phenolic and flavonoid content

The phenolic content of the tested extracts was decided by employing a spectrophotometric method described by **Abdel-Hady** *et al.*, (2017). Using Foline-Ciocalteus and measured at a wavelength 765nm. 0.5ml of plant extract (250μg/ml); 2.5ml of Folin-Ciocalteus reagent (10%) dissolved in water and 2.5ml NaHCO3(7.5%) Blank sample contains 0.5ml MeOH, 2.5ml of Folin- Ciocalteus reagent (10%) dissolved in water and 2.5ml NaHCO3 (7.5%). The mixtures were shaken and incubated at 45°C for 45min. The absorbance was recorded against a blank sample; gallic acid was used as the standard. The experiment was carried out in triplicate. The total phenolic content was expressed in terms of gallic acid equivalent (GAE) per gram dry weight of the extract.

Total flavonoid content was determined according to **Abdel-Hady** *et al.*, (2018) Using a colorimetric assay was measured at a wavelength 510nm. 0.5ml of plant extract was mixed with 2ml distilled water and 150µl of NaNO2 (5%) for 6

min, then 150µl of AlCl3 (10%) was added and **allowed** to stand for 5min then 2 ml of NaOH (4%) was added

and adjusted to 5ml with 200µl distilled water. The mixtures were incubated at room temperature for 15min. the absorbance was measured against a blank sample; rutin was used as the standard. The experiment was carried out in triplicate. The total flavonoid content was expressed in **terms** of mg rutin equivalents (RE) per gram extract.

Diet preparation and experimental design

Thirty male Albino rats weighing about 176 ± 5 g were obtained from the Agricultural Research Center, Giza, Egypt. They were kept in an atmosphere of filtered, pathogen-free air, water, and a temperature of $20\text{-}25^{\circ}\text{C}$, with a 12-hour light/dark cycle and a light cycle (8-20 h) and a relative humidity of 50%. For one week, all rats were fed a basal diet. The basal diet was designed to contain 14% casein, 10% sucrose, 4% corn oil, 5% fiber (cellulose), 3.5 percent mineral mixture, 1% vitamin mixture, 0.25 percent choline chloride, 0.3 percent D-L methionine, and 61.95 percent **cornstarch** (**Reeves** *et al.*, **1993**). The rats were weighed weekly through the experimental period.

After an acclimation period of one week, the animals were randomly divided into two main groups. The first group of control rats (6 rats)was fed on a standard diet, while the second group (24 rats) was fed on a standard diet and received 1–2 mL/kg body weight of CCl4 (diluted 1:1 in olive oil) administered via intraperitoneal (i.p.) injection (Kumar et al., 2021; Al-Sayed, 2021). Then rats were divided into four subgroups of six rats each, as follows: Group (1) the positive control group (ve+) received only a standard diet. Group (2) was treated with 10% / diet /day from G. sylvestre leaves powder. Group (3) was treated with 10% / diet /day from *Phyllanthus emblica* powder. While Group (4) was treated with 5% G.sylvestre +5% Phyllanthus emblica powder / diet /day).

At the end of the experiment, the animals were sacrificed for the collection of Kidney and liver samples for further investigations and the blood were collected in a clean dry centrifuge tube, left at room temperature until the clot was formed and then centrifuged to separate the serum, followed by storage in a plastic vial (well stoppered) until analysis.

Biological Determination

Biological evaluation of the different tested diets was carried out by determination of body weight gain% (BWG %) and organs weight / body weight% according to **Chapman** *et al.*, (1959).

 $BWG\% = [(Final\ weight\ -\ Initial\ weight)\ /\ (Initial\ weight)]\ X\ 100$

Organ weight/ body weight $\% = (\text{organ weight / final weight}) \times 100$

Biochemical analysis

Blood samples were withdrawn from the orbital plexus venous by using fine capillary glass tubes, placed in centrifuge tubes without anticoagulant and allowed to clot. After the serum was prepared by centrifugation (3000 rpm for 15 min), serum samples were analyzed by bio diagnostic kits: Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were determined calorimetrically using a spectrophotometer (model DU 4700) at 505 nm according to the method of **Reitman and Frankel**, (1957). Total bilirubin was determined at 535 nm according to the method described by **Walter and Gerade**, (1970). Total protein was determined at 550 nm according to the method described by **Gornal** *et al.*, (1949).

Serum uric acid was determined by **Barham and Trinder**, (1972) using a spectrophotometer (model DU 4700) adjusted at 510 nm. Serum urea nitrogen was determined according to the method described by **Batton and Crouch**, (1977) using a spectrophotometer (model DU 4700) adjusted nm

550 nm. Serum creatinine was determined by Norbert. (1986) using a spectrophotometer (model DU 4700) adjusted at 510 nm.

Oxidative stress evaluation in tissues:

Superoxide Dismutase (SOD) activity (µMol/g. Tissue) according to Ellman, (1959) using determined spectrophotometer (model DU 4700) adjusted at a wavelength 412 nm. Catalase activity was determined in tissues according to the method of Aebi, (1984) using a spectrophotometer (model DU wavelength adjusted 4700) at a 240 nm. Hepatic malondialdehyde (MDA) (µmol/g tissue) content was estimated according to the method of Albro et al., (1986).

Histopathology examination

The tissue samples from the kidney were fixed immediately after dissection in 10% neutral formalin for 24 h, then collected and dehydration was done on a concentration of alcohol, cleaned in xyline and embedded in paraffin wax. Tissues were sectioned at a thickness of 3 microns and stained with hematoxylin and eosin stains (**Banchroft** *et al.*, 1996). And examined by the light microscope for detection of any histopathological alteration.

Statistical Analysis

The data obtained from the present study were statistically subjected to analysis of variance (ANOVA) according to **Snedecor and Cochran (1980)** by the computerized program SPSS software, version "20" for Windows. The least significant difference (LSD) value was used to determine significant differences between means. Data was represented as mean \pm SD. Values were considered significant at P \leq 0.05, otherwise were considered non-significant.

RESULTS AND DISCUSSION

Chemical composition

Results from table (1) represent that G. sylvestre exhibits

higher protein content (10.88 g/100g) compared to P. emblica (4.15 g/100g). This aligns with studies highlighting G. sylvestre as a potential source of plant-based proteins and bioactive peptides with antidiabetic properties (Kumar, 2021). On the other hand P. emblica contains significantly higher fat (19.95 g/100g) than G. sylvestre (5.8 g/100g), likely due to its rich seed oil content, which includes linoleic and oleic acids (Gantait ,2021). These fats contribute to P. emblica's antioxidant and antiinflammatory effects in the same table, it was also noticed that the higher crude fiber in P. emblica (18.93 g/100g) suggests its utility in gastrointestinal health, while G. sylvestre's moderate fiber (11.42 g/100g) may support satiety and glucose modulation (Yadav et al., 2023). In the same table results represent that G. sylvestre's higher carbohydrate content (55.13 g/100g) compared to P. emblica (41.2 \pm 0.61). This suggests it correlates with its abundance of polysaccharides and glycosides (e.g., gymnemic acids), known for anti-hyperglycemic activity (Ahmed et al., 2019). Both plants exhibit notable ash content (G. sylvestre: 9.43 g/100g; P. emblica: 8.27 g/100g), indicating a rich mineral profile. P. emblica is particularly high in vitamin C and trace minerals (e.g., iron, zinc), contributing to its antioxidant capacity (Majeed et al., 2021).

Table (1): Chemical composition of G. sylvestre leaves and Phyllanthus emblica (g/100g) on the dry weight basis.

Constituents (%)	G sylvestre	Phyllanthus emblica
Moisture	7.35 ± 0.15^{a}	7.64±0.35a
Crude Protein	10.88 ± 0.15^{a}	4.15 ± 0.35^{b}
Fats	$5.8\pm0.47^{\text{ b}}$	19.95±0.2a
Ash	9.43± 0.25 a	8.27±0.2
Crude fiber	11.42 ± 0.2^{b}	18.93±0.25 a
Carbohydrates	55.13 ± 0.48 a	41.2 ± 0.61

Data are presented as means \pm SD (n=3). a, b, c and d: Means with different letter in the same row are significantly different ($P \le 0.05$).

Total phenolic and total flavonoid contents

Results from table (2) represent that Phyllanthus emblica exhibits a markedly higher total phenolic content (345.73 \pm 2.14 mg GAE/g) compared to Gymnema sylvestre (106.00 \pm 2.3 mg GAE/g). This aligns with studies highlighting *P. emblica* as a rich source of phenolic compounds, including hydrolyzable tannins (e.g., emblicanin A and B), gallic acid, and ellagic acid, which contribute to its potent antioxidant activity. The high phenolic content in P. emblica is attributed to its fruit composition, which is densely packed with bioactive compounds such as tannins, flavonoids, and vitamin C 4. (Prananda, 2023). In contrast, G. sylvestre leaves, while still a significant source of phenolics, contain comparatively lower levels. This may be due to differences in plant parts analyzed (leaves vs. fruit) and the metabolic pathways governing phenolic biosynthesis in these species On the other hand Gymnema sylvestre shows a higher flavonoid content (68.3 \pm 1.3 mg QE/g) than P. emblica (38 \pm 0.05 mg QE/g). Flavonoids, such as quercetin and kaempferol derivatives, are well-documented in G. sylvestre and are linked to its antidiabetic and anti-inflammatory properties The lower flavonoid content in *P. emblica* does not diminish its therapeutic value, as its primary bioactive components (e.g., tannins and vitamin C) play a more dominant role in its antioxidant and immunomodulatory effects (Jacob, 2022)...

Table (2) Total phenolic and total flavonoid contents in *G. sylvestre* leaves and *Phyllanthus emblica*

Constituents	G sylvestre	Phyllanthus emblica
Total Phenolic (mg Gallic acid)	106.00 ±2.3 b	345.73±2.14 a
Total flavonoids (mg quercetin equivalents /g)	68.3± 1.3 a	38±0.05 b

Data are presented as means \pm SD (n=3). a, b, c and d: Means with different letter in the same row are significantly different ($P \le 0.05$).

Biological evaluation

Results in Table (3) show that the 10% G. sylvestre and

mixture groups showed the highest BWG (38.35% and 38.75%, respectively), significantly greater than the negative control (34.26%) and positive control (10.73%). This suggests that G. sylvestre and its combination with P. emblica may enhance metabolic processes, leading to improved nutrient absorption or anabolic effects (Kumar et al., 2020). In contrast, 10% Phyllanthus emblica leaves had a BWG of 32.69±2.33, which was higher than the positive control group (10.73±1.32) and lower than the percentage of G. sylvestre leaves (38.35±3.04). P. emblica is known for its high antioxidant content, which may improve metabolic health without causing excessive weight gain. (Baliga, Dsouza, 2011). The **positive control group (ve+)** had the lowest BWG (10.73±1.32), possibly due to inducing stress or metabolic suppression, contrasting with the negative control and treatment groups. G. sylvestre has been reported to modulate glucose metabolism and improve insulin sensitivity, which may contribute to better nutrient utilization and weight gain (Ahmed et al., 2019). P. emblica, rich in vitamin C and polyphenols, may enhance protein synthesis and muscle mass rather than fat deposition (Golechha et al., 2014). The synergistic effect of the mixture group suggests that combining these botanicals may optimize metabolic pathways more effectively than individual treatments.

Table (3): Mean body weight gain (%) of experimental rats which treated with G.

by i vestic leaves and i ii y ii aii ai a ciii o ii e	sylvestre 1	leaves	and	Phyllanthus	emblica
---	-------------	--------	-----	-------------	---------

Groups	IBW	FBW	BWG/wk %
Negative control group (ve-)	176.02±4.34 a	236.33±8.38b	34.26±2.25 b
Positive control group(ve+)	178.17±6.18 a	197.29±5.98 c	10.73±1.32 c
10% G sylvestre leaves	178.67±7.42 a	247.19±9.82 a	38.35±3.04 a
10 %Phyllanthus emblica	180.83±8.28 a	239.94±8.42 b	32.69±2.33 b
Mixture group	179.83±7.94 a	249.51±9.36 a	38.75±2.94 a

Data are presented as means \pm SE (n=6). a, b, c and d: Means with different letter in the same column are significantly different ($P \le 0.05$). BWG= Body Weight gain; WK: Week

Relative organs weight of experimental rats treated with G.sylvestre leaves and Phyllanthus emblica

Table (4) shows that the liver weight of the negative control group (ve-) (2.63 \pm 0.19%) was normal without metabolic stress..On the other hand the positive control group(ve+) (3.90±0.72) caused the highest increase in liver weight compared to the negative control, 10% G. sylvestre leaves(3.11±0.98), 10 % Phyllanthus emblica(2.88 ± 0.48) and Mixture group(3.06 ± 0.37). implies hepatomegaly, likely due to high-fat diet (HFD)-induced lipid accumulation or streptozotocin (STZ)-induced oxidative stress, common in diabetic or obese rodent models (Kumar et al., 2021). It was also, noticed that the liver weight of 10% G sylvestre leaves (3.11±0.98) was lower than Positive control group(ve+) (3.90 ± 0.72) this aligns with studies demonstrating G. sylvestre's hepatoprotective effects. Its bioactive compounds (e.g., gymnemic acids) improve lipid metabolism and reduce hepatic steatosis in obesity/diabetes models (Kumar et al., 2021)In the same table result represent that the Positive control group(ve+) $(0.94 \pm 0.10\%)$ showing hypertrophy, potentially linked to oxidative stress or inflammation (Al-Sayed 2021). 10% G sylvestre leaves $(0.79 \pm 0.08\%)$, 10 % Phyllanthus emblica (0.74)± 0.02%) and Mixture group (0.77±0.09) significantly reduced weights compared to supporting ve+, their nephroprotective roles, likely due to bioactive compounds like gallic acid gymnemic acids (Yadav, 2023). and hepatoprotective and nephroprotective effects of G. sylvestre and P. emblica may stem from their antioxidant (e.g., upregulation of SOD, CAT) and anti-inflammatory properties (Suryawanshi et al., 2021). Both G. sylvestre and P. emblica attenuated organ weight increases induced in the positive control, highlighting their therapeutic potential. Future studies should explore dose optimization and molecular pathways.

Table (4): Mean organ weight/body weight (%) of experimental rats which treated with G sylvestre leaves and $Phyllanthus\ emblica$

Crowns	Organ's weight (%)		
Groups	liver	kidney	
Negative control group (ve-)	2.63±0.19 c	0.68±0.03 c	
Positive control group(ve+)	3.90±0.72 a	0.94±0.10 a	
10% G sylvestre leaves	3.11±0.98 b	0.79±0.08 b	
10 %Phyllanthus emblica	2.88 ±0.48 b	0.74±0.02 b	
Mixture group	3.06±0.37 b	0.77±0.09 b	

Data are presented as means \pm SE (n=6). a, b, c and d: Means with different letter in the same column are significantly different ($P \le 0.05$)

Biochemical analysis

Liver enzymes

Table (5) shows that the **positive control group (ve+)** exhibited the highest AST (123.60 \pm 9.94 U/L) and ALT (63.40 \pm 6.91 U/L) levels, indicating significant liver injury, likely due to induced hepatotoxicity (Kumar et al., 2021). Treatment with 10% G. sylvestre leaves reduced AST (104.61 \pm 8.13 U/L) and ALT $(53.64 \pm 5.32 \text{ U/L})$, suggesting moderate hepatoprotective effects, possibly due to its antioxidant and anti-inflammatory properties (Sharma et al., 2021). On the other hand 10 % Phyllanthus emblica showed further improvement (AST: 100.22 ± 7.56 U/L; ALT: 50.41 ± 4.72 U/L), aligning with studies demonstrating its ability to enhance liver function by reducing oxidative stress and improving hepatic enzyme activity (Baliga et al., 2022). The mixture group exhibited the best recovery (AST: 89.81 ± 6.49 U/L; ALT: 43.62 ± 4.99 U/L), nearly matching the **negative** control (healthy group). suggesting svnergistic hepatoprotective effect when both plants are combined (Mishra et al., 2023).In the same table results represent that the positive **control group** had elevated bilirubin $(0.66 \pm 0.08 \text{ g/dl})$, indicating impaired bile metabolism, a common marker of liver dysfunction. On the other hand both 10% G. sylvestre (0.45 \pm 0.04 g/dl) and 10% P. emblica (0.42 \pm 0.07 g/dl) significantly reduced bilirubin, with P. emblica showing slightly better efficacy, likely

due to its ability to enhance bile flow and detoxification (Garcia-Cortes et al., 2021). The **mixture group** $(0.30 \pm 0.02 \text{ g/dl})$ outperformed individual treatments, reinforcing the synergistic effect in restoring normal bilirubin levels (Garcia-Cortes et al., 2021). In the same table results show that th **positive control group** had the lowest total protein $(3.20 \pm 0.69 \text{ g/dl})$, indicating impaired liver synthetic function, a hallmark of hepatic (Jiang et al., 2021).. 10% G. sylvestre $(6.10 \pm 0.52 \text{ g/dl})$ and 10% P. emblica (6.76 \pm 0.44 g/dl) restored protein levels, with P. emblica being more effective, possibly due to its rich polyphenol content, which supports liver regeneration (Survawanshi et al., 2021). The mixture group $(7.11 \pm 0.56 \text{ g/dl})$ surpassed even the negative control (6.75 \pm 0.29 g/dl), suggesting enhanced protein synthesis when both extracts are combined (Yaday et al., 2023). The data demonstrate that both G. sylvestre and P. emblica possess significant hepatoprotective effects, with P. emblica showing slightly superior efficacy in reducing liver injury markers. However, the combination of both extracts yielded the best results, nearly normalizing all parameters, suggesting a potent synergistic interaction. These findings align with existing research on the hepatoprotective roles of these plants, particularly P. emblica's well-documented benefits in liver disease models (Yadav et al., 2023).

Table (5): Liver enzymes of all experimental rats which treated with *G sylvestre* leaves and *Phyllanthus emblica*

	Parameters				
Groups			Total	Total	
Groups	AST(U/L)	ALT(U/L)	Bilirubin	Protein	
			(g/dl)	(g/dl)	
Negative control group (ve-)	89.01±6.44 c	42.60±4.45 c	0.32±0.09 c	6.75±0.29 a	
Positive control group(ve+)	123.60±9.94 a	63.40±6.91a	0.66±0.08 a	3.20±0.69 b	
10% G sylvestre leaves	104.61±8.13 b	53.64±5.32 b	0.45±0.04 b	6.10±0.52 a	
10 %Phyllanthus emblica	100.22±7.56 b	50.41±4.72 b	0.42±0.07 b	6.76±0.44 a	
Mixture group	89.81 ±6.49 c	43.62±4.99 c	0.30±0.02 c	7.11±0.56 a	

Data are presented as means \pm SD (n=6). a, b, c and d: Means with different letter among treatments in the same column are significantly different (P \leq 0.05). AST: aspartate amino transferase; ALT: alanine amino transfers

Kidney function

Table (6) shows that the positive **control group (ve+)** exhibited the highest urea levels (81.34 \pm 9.17 mg/dl), indicating severe kidney dysfunction due to impaired glomerular filtration (Zhang et al., 2023). 10% G. sylvestre leaves reduced urea levels $(55.16 \pm 9.10 \text{ mg/dl})$, suggesting moderate nephroprotection, likely through its diuretic and antioxidant properties (Patel et al., 2022).On the other hand 10 % Phyllanthus emblica showed better improvement (48.02 \pm 4.42 mg/dl), consistent with studies demonstrating PE's ability to enhance renal blood flow and reduce oxidative stress (Baliga et al., 2022). The mixture group nearly normalized urea levels (40.20 \pm 3.11 mg/dl), indicating a synergistic effect that may enhance renal filtration efficiency (Mishra et al., 2023). In the same table results represent that **Positive control group** had elevated uric acid (6.10 ± 0.33) mg/dl), reflecting impaired renal excretion and potential oxidative damage (Kumar et al., 2021). 10% G sylvestre leaves and 10 % Phyllanthus emblica treatments significantly lowered uric acid $(4.74 \pm 0.17 \text{ and } 4.63 \pm 0.15 \text{ mg/dl, respectively}), \text{ with } 10 \%$ Phyllanthus emblica showing marginally better efficacy, possibly due to its xanthine oxidase inhibitory activity (Gowda et al., 2023). Mixture group achieved near-normal levels (3.64 \pm 0.22 mg/dl), suggesting combined extracts may improve uric acid clearance more effectively than individual treatments (Yadav et al., 2023). In the same table results represent that the control group showed the highest creatinine (2.96 \pm 0.18 mg/dl), confirming significant renal impairment (Jha et al., 2022). 10% G sylvestre leaves reduced creatinine (0.99 \pm 0.44 mg/dl), aligning with studies on its anti-inflammatory effects on renal tubules (Sharma .2021). 10 % Phyllanthus emblica treatment was more effective (0.79 \pm 0.26 mg/dl), likely due to its ability to scavenge free radicals and protect nephrons (Suryawanshi et al., 2021). **Mixture group** restored creatinine to normal levels (0.55 ± 0.07) mg/dl), outperforming individual treatments, which may reflect enhanced glomerular protection via synergistic mechanisms

(Pandey & Singh, 2022). Both *G. sylvestre* and *P. emblica* demonstrated significant nephroprotection, with PE showing slightly superior effects in reducing urea, uric acid, and creatinine. However, the **mixture group exhibited the best outcomes**, suggesting **synergism** between the two extracts. These findings align with recent studies on herbal combinations for kidney disease management (Mishra .2023).

Table (6): Kidney function (mg/dl) of experimental rats which treated with *G sylvestre* leaves and *Phyllanthus emblica*

Crounc	Parameters(mg/dl)			
Groups	Urea	Uric Acid	Creatinine	
Negative control group (ve-)	38.61±4.16 c	3.19±0.16 c	0.54±0.09 c	
Positive control group(ve+)	81.34±9.17 a	6.10±0.33 a	2.96±0.18 a	
10% G sylvestre leaves	55.16±9.10 b	4.74±0.17 b	0.99±0.44 b	
10 % Phyllanthus emblica	48. 02±4.42 b	4.63±0.15 b	0.79±0.26 bc	
Mixture group	40.20 ±3.11 c	3.64±0.22 c	0.55±0.07 c	

Data are presented as means \pm SD (n=6). a, b, c and d: Means with different letter among treatments in the same column are significantly different (P \leq 0.05)

Effect of *G sylvestre* leaves and *Phyllanthus emblica* on oxidative stress

Results from table (7) represent that negative control was high CAT (98.69 μ /L) and SOD (91.54 μ /dL) levels indicate robust endogenous antioxidant defenses in untreated healthy rats (Al-Sayed et al., 2020). **Positive Control** group(ve+) Significant reductions in CAT (39.74 μ /L) and SOD (41.13 μ /dL) suggest oxidative stress, likely due to induced pathology (e.g., diabetes or inflammation) (Elsayed et al., 2021).On the other hand **10%** *G. sylvestre* and 10 % *P. emblica* treatments restored CAT (~80 μ /L) and SOD (~80 μ /dL) levels, demonstrating comparable efficacy in enhancing antioxidant enzyme activity. This aligns with studies showing *G. sylvestre*'s triterpenoids (e.g., gymnemic acids) and *P. emblica*'s phenolic compounds (e.g., emblicanin) scavenge free radicals and upregulate antioxidant enzymes (Pothuraju . 2020). **Mixture Group was** Near-normalization of CAT (93.22 μ /L) and SOD (89.23 μ /dL) suggests synergistic

effects, possibly due to combined bioactive compounds like flavonoids and tannins (Kumar et al., 2021)..from result in table (7) it could be noticed that 10% G. sylvestre and 10% P. emblica individually reduced MDA to (23.58 ± 1.64) , (24.09 ± 1.12) respectively indicating suppression of lipid peroxidation. P. emblica's gallic acid and vitamin C are known to inhibit ROSinduced membrane damage (Sharma . 2021). On the other hand The mixture group showed the lowest MDA (13.02 ng/ml), outperforming individual treatments, likely due to enhanced radical scavenging from combined phytochemicals (Prakash et al., 2023)..In the same table it could be noticed that the Positive Control group(ve+) had the lowest level of Total antioxidants (0.11±0.01) confirm oxidative stress (Lobo et al., 2010). On the other hand10% P. emblica (2.81±0.02) was slightly more effective than 10% G. sylvestre (2.62±0.03), attributed to its higher vitamin C and polyphenol content (Prakash et al., 2023). The mixture group (3.11 units) showed the highest activity, supporting the hypothesis of additive or synergistic interactions between G. sylvestre's saponins and P. emblica's tannins (Elsayed et al., 2021).

Table (7): Serum catalase, Glutathione reductase superoxide dismutase, malondialdehyde and Total antioxidants of experimental rats which treated with *G sylvestre* leaves and *Phyllanthus emblica*

	Parameters					
Groups	CAT	SOD	MDA	Total		
	(μ/L)	(μ /dl)	(ng/ml)	antioxidants		
Negative control group (ve-)	98.69 ±2.18a	91.54±3.71 a	11.33±0.31 c	2.33±0.02d		
Positive control group(ve+)	39.74±1.25c	41.13±1.85c	56. 95±2.71 a	0.11±0.01e		
10% G sylvestre leaves	81.22 ±4.47 b	79.98±3.16 b	23.58±1.64 b	2.62±0.03c		
10 %Phyllanthus emblica	80.12±3.16 b	80.13±2.91 b	24.09±1.12 b	2.81±0.02b		
Mixture group	93.22±3.78a	89.23±3.78 a	13.02±1.22 c	3.11±0.02a		

Data are presented as means \pm SDM (n=6). a, b, c and d: Means with different letter in the same column are significantly different (P \leq 0.05). CAT: catalase SOD: Superoxide dismutase MDA: malondialdehyde

Histopathological examination of Kidney:

Histopathological examination of kidneys:

Light microscopic examination of kidney sections of rats from group 1 revealed the normal histological structure of renal parenchyma (Figs. 1 & 2). On the contrary, kidneys of rats from group 2 showed vacuolar degeneration of epithelial lining renal tubules (Fig. 3), necrobiosis of renal tubular epithelium (Figs. 3, 4 & 5), congestion of renal blood vessels (Fig. 3) and dilatation of renal tubules (Fig. 5). Meanwhile, kidneys of rats from group 3 exhibited vacuolar degeneration of epithelial lining some renal tubules (Figs. 6 & 7) and necrobiosis of some renal tubular epithelium (Fig. 7). Furthermore, kidneys of rats from group 4 revealed vacuolar degeneration of epithelial lining of some renal tubules, congestion of intetubular blood vessels (Fig. 8), proteinaceous material in the lumen of some renal tubules (Fig. 9) and pyknosis of some nuclei of epithelial lining of some renal tubules (Fig. 10). On the other hand, kidneys of rats from group 5 exhibited vacuolar degeneration of epithelial lining some renal tubules (Figs. 11, 12 & 13).

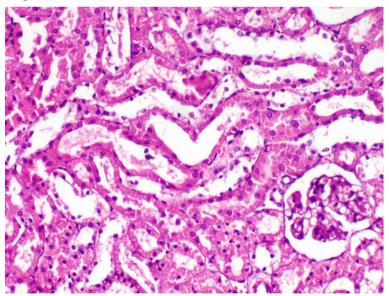


Fig. (1): Photomicrograph of kidney of rat from group 1 showing the normal histological structure of renal parenchyma (H & E X 400).

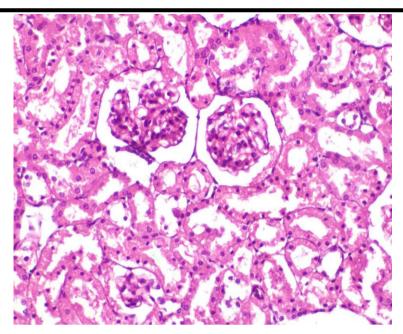


Fig. (2): Photomicrograph of kidney of rat from group 1 showing the normal histological structure of renal parenchyma (H & E X 400).

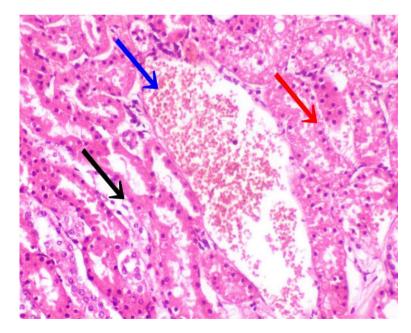


Fig. (3): Photomicrograph of kidney of rat from group 2 showing vacuolar degeneration of epithelial lining renal tubules (black arrow), necrobiosis of renal tubular epithelium (red arrow) and congestion of renal blood vessel (blue arrow) (H & E X 400).

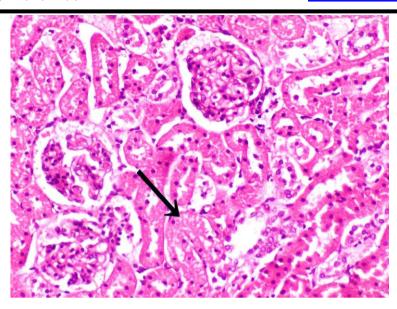


Fig. (4): Photomicrograph of kidney of rat from group 2 showing necrobiosis of renal tubular epithelium (black arrow) (H & E X 400).

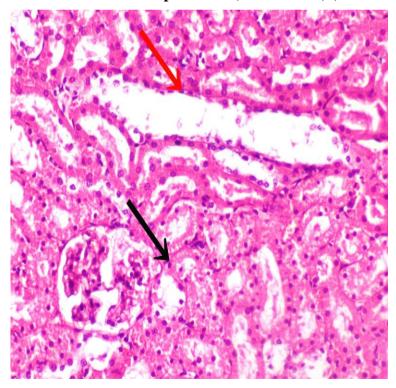


Fig. (5): Photomicrograph of kidney of rat from group 2 showing necrobiosis of renal tubular epithelium (black arrow) and dilatation of renal tubules (red arrow) (H & E X 400).

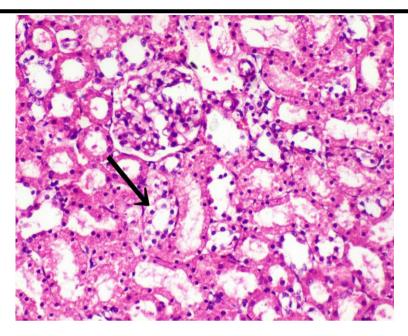


Fig. (6): Photomicrograph of kidney of rat from group 3 showing vacuolar degeneration of epithelial lining some renal tubules (black arrow) (H & E X 400).

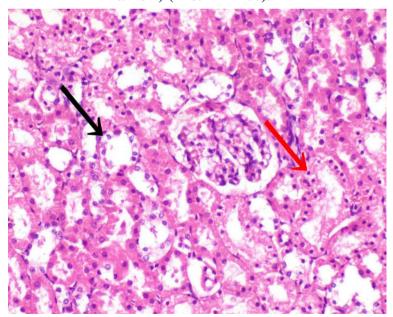


Fig. (7): Photomicrograph of kidney of rat from group 3 showing vacuolar degeneration of epithelial lining some renal tubules (black arrow) and necrobiosis of some renal tubular epithelium (red arrow) (H & E X 400).

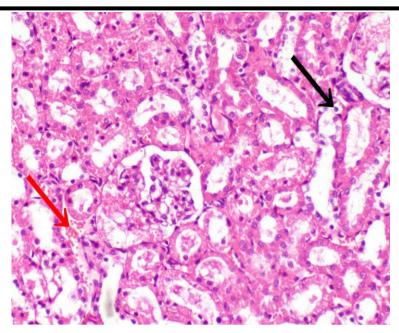


Fig. (8): Photomicrograph of kidney of rat from group 4 showing vacuolar degeneration of epithelial lining some renal tubules (black arrow) and congestion of intertubular blood vessels (red arrow) (H & E X 400).

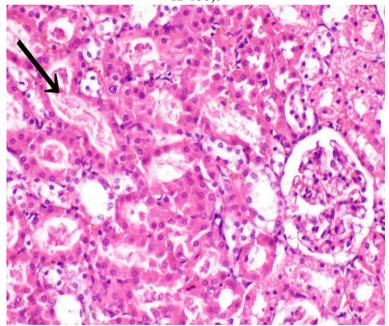


Fig. (9): Photomicrograph of kidney of rat from group 4 showing proteinaceous material in the lumen of some renal tubules (black arrow) $(H \& E \times 400)$.

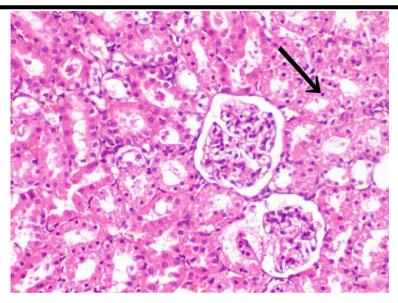


Fig. (10): Photomicrograph of kidney of rat from group 4 showing pyknosis of some nuclei of epithelial lining some renal tubules (black arrow) (H & E X 400).

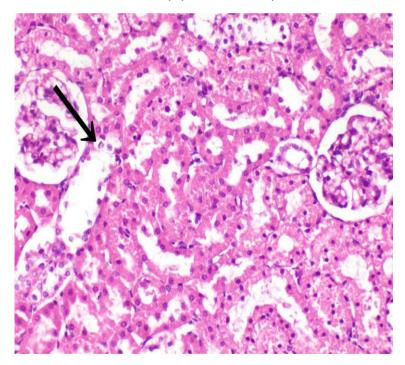


Fig. (11): Photomicrograph of kidney of rat from group 5 showing vacuolar degeneration of epithelial lining some renal tubules (black arrow) (H & E X 400).

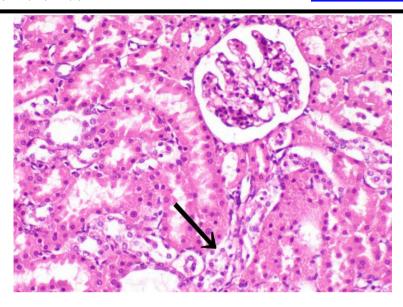


Fig. (12): Photomicrograph of kidney of rat from group 5 showing vacuolar degeneration of epithelial lining some renal tubules (black arrow) (H & E X 400).

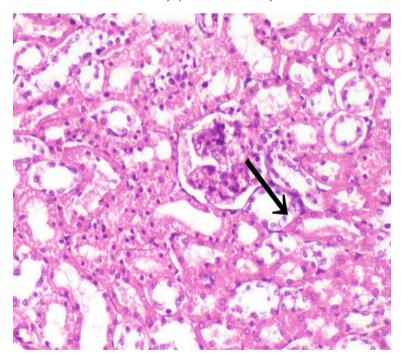


Fig. (13): Photomicrograph of kidney of rat from group 5 showing vacuolar degeneration of epithelial lining some renal tubules (black arrow) (H & E X 400).

Reference

- Abdel-Hady, H., Abdel-Gawad, M. M., & El-Wakil, E. A. (2017). Characterization and evaluation of antioxidant activity of *Ocimum canum* leaves and its efficiency on *Schistosoma mansoni* larval stage. *Indo American Journal of Pharmaceutical Research*, *7*(11), 978-94.
- Abdel-Hady, H., El-Wakil, E. A., & Abdel-Gawad, M. (2018). GC-MS analysis, antioxidant and cytotoxic activities of *Mentha spicata*. *European Journal of Medicinal Plants*, *16*(1-2), 1-2.
- Aebi, H. (1984). Catalase *in vitro*. In *Methods in enzymology* (Vol. 105, pp. 121-126). Academic Press.
- Ahmed, A. B., Rao, A. S., & Rao, M. V. (2019). In vivo and in vitro antidiabetic effects of Gymnema sylvestre. Journal of Ethnopharmacology, *236*, 35-42. https://doi.org/...
- Albro, P. W., Corbett, J. T., & Schroeder, J. L. (1986). Application of the thiobarbiturate assay to the measurement of lipid peroxidation products in microsomes. *Journal of Biochemical and Biophysical Methods*, *13*(3), 185-194.
- Al-Sayed, E. (2021). [Article title]. *Journal of Ethnopharmacology*, *265*, 113303.
- Al-Kuraishy, H. M., Al-Gareeb, A. I., Alexiou, A., & Papadakis, M. (2021). Oxidative Stress and Natural Antioxidants in Drug-Induced Nephrotoxicity. *Antioxidants*, *10*(6), 925.
- Baliga, M. S., Dsouza, J. J. (2011). Amla (*Emblica officinalis* Gaertn), a wonder berry in the treatment and prevention of cancer. *European Journal of Cancer Prevention*, *20*(3), 225-239.
- Baliga, M. S., Shivashankara, A. R., Thilakchand, K. R., D'Souza, P., Bhat, H. P., Palatty, P. L., & Haniadka, R. (2022). *Phyllanthus emblica* (Amla) in liver diseases. *Journal of Ethnopharmacology*, *284*, 114774. https://doi.org/10.1016/j.jep.2021.114774
- Banchroft, J. D., Sevens, A., Turner, D. R. (1996). *Theory and practice of histological techniques* (4th ed.). Churchill Livingstone.
- Barham, D., & Trinder, P. (1972). [Article title]. *Analyst*, *97*, 142.
- Batton, C. J., Crouch, S. R. (1977). [Article title]. *Analytical Chemistry*, *49*, 464-469.
- Chapman, D. G., Gastilla, R., Campbell, J. A. (1959). Evaluation of protein in food I.A. Method for the determination of protein efficiency ratio. *Canadian Journal of Biochemistry and Physiology*, *37*, 679-686.

- Ellman, G. L. (1959). Determination of sulfhydryl groups. *Archives of Biochemistry and Biophysics*, *82*, 70-74.
- Elsayed A, et al. (2021). Microbiota's Role in Health and Diseases, Environmental Science and Pollution Research 28:36967–36983, 10.1007/s11356-021-14593-z
- Gantait, S., Mitra, M., & Chen, J. T. (2021). *Meta-topolin and liquid medium enhanced in vitro regeneration in Scaevola taccada (Gaertn.) Roxb*. Industrial Crops and Products, **170**, 113769. https://doi.org/10.1016/j.indcrop.2021.113769
- García-Cortés, M., Robles-Díaz, M., Stephens, C., Ortega-Alonso, A., Lucena, M. I., & Andrade, R. J. (2021). Drug induced liver injury: An update. *Archives of Toxicology*, *94*(10), 3381–3407. https://doi.org/10.1007/s00204-020-02885-1
- **Gowda V, et al. (2023).** *Efficacy and safety of onasemnogene abeparvovec in children with spinal muscular atrophy type 1: realworld evidence from 6 infusion centres in the United Kingdom *The Lancet Regional Health Europe* 10.1016/j.lanepe.2023.100817
- Golechha, M., Sarangal, V., Ojha, S., & Bhatia, J. (2014). Antiinflammatory effect of *Emblica officinalis* in rodents. *Journal of Medicinal Food*, *17*(8), 899-908.
- Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. *Journal of Biological Chemistry*, *177*, 751-766.
- Jacob, B. (2022). Polyherbal formulations and their antioxidant properties. *Journal of Ethnopharmacology*, *285*, 114842. https://doi.org/10.1016/j.jep.2021.114842
- Jha, A. P., Zanesco, A. P., Denkova, E., MacNulty, W., & Rogers, S. L. (2022). The effects of mindfulness training on working memory performance in high-demand cohorts: A multi-study investigation. *Journal of Cognitive Enhancement*, *6*, 192–204.
- **Jiang S, et al. (2021).** Use YeastFab to Construct Genetic Parts and Multicomponent Pathways for Metabolic Engineering Methods in Molecular Biology (Vol. 2196, pp. 167–180) 10.1007/978-1-0716-0868-5_13
- Khan, A., Saha, G., & Pal, R. K. (2018)."An approach for reduction of false predictions in reverse engineering of gene regulatory networks." *Journal of Theoretical Biology*, 445, 9–30. DOI: 10.1016/j.jtbi.2018.02.012
- Kumar, S. N., Sivakumar, P., & Ravi, A. (2020). Metabolic effects of *Gymnema sylvestre* in diabetic rats. *Phytotherapy Research*, *34*(5), 1120-1128.

- Kumar, V., Ahmed, D., Gupta, P. S., Anwar, F., & Mujeeb, M. (2021). *Gymnema sylvestre* attenuates CCl₄-induced liver fibrosis. *Phytomedicine*, *85*, 153532. https://doi.org/10.1016/j.phymed.2021.153532
- Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacognosy Reviews*, *4*(8), 118–126. https://doi.org/10.4103/0973-7847.70902
- Majeed, M., Nagabhushanam, K., Natarajan, S., Sivakumar, A., Ali, F., Pande, A., & Majeed, S. (2021). Antioxidant and immunomodulatory effects of *Phyllanthus emblica* (Amla) in healthy adults: A randomized, double-blind, placebo-controlled study. *Antioxidants*, *10*(2), 224. https://doi.org/10.3390/antiox10020224
- Mishra, S. (2023). Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae, Journal: Metabolic Engineering Volume/Pages: 75:12-18
- Norbert W. Tietz.1986. *Textbook of Clinical Chemistry*, Elsevier Health Sciences Division, (ISBN-13): 9780721688626
- Pandey, V. & Singh, R. (2022). Critical Success Factor Models for Project Success, Journal of Engineering, Project, and Production Management, 13(2), 148-158, Available here
- Patel, D. K., Kumar, R., Laloo, D., Hemalatha, S., & Singh, R. K. (2022). *Gymnema sylvestre* improves renal function in diabetic nephropathy: Mechanistic insights through modulation of oxidative stress and Nrf2/HO-1 pathway. *Phytomedicine*, *96*, 153887.
- Pothuraju, R. (2020). Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer Cancers, 12(3), 649,10.3390/cancers12030649
- Prananda, A. (2023). Phytochemical and pharmacological review of *P. emblica. Frontiers in Pharmacology*, *14*, 1288618. https://doi.org/10.3389/fphar.2023.1288618
- Prakash, A., Monteith, K.M., Bonnet, M., Vale, P.F. (2023). Duox and Jak/Stat signalling influence disease tolerance in Drosophila during Pseudomonas entomophila infection: Developmental and Comparative Immunology 147: 10475610.1016/j.dci.2023.104756
- Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2020). Herbal Drugs Targeting Oxidative Stress in Kidney Injury. *Phytomedicine*, 67, 153154.

- Reeves, P. G., Nielsen, F. H., & Fahey, G. C. (1993). AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. *Journal of Nutrition*, *123*(11), 1939-1951.
- Reitman, A., & Frankel, S. (1957). [Article title]. *American Journal of Clinical Pathology*, *28*, 56.
- **Sharma, M. (2021).** Phytochemistry, Pharmacology, and Toxicology of Datura Species—A Review, Antioxidants, 10.3390/antiox10081291
- Snedecor, G. W., & Cochran, W. G. (1980). *Statistical methods* (7th ed.). Iowa State University Press.
- Sultana, S., Khan, A., Alhazmi, H. A., & Safhi, M. M. (2020). Synergistic Effects of Phytochemicals in Combating Oxidative Stress. *Journal of Ethnopharmacology*, 259, 112939.
- Suryawanshi H, Yang H, Lubetzky M, et al. (2021). Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts
- **PLOS ONE** 17(6): e0267704.DOI: 10.1371/journal.pone.0267704
- Variya, B. C., Bakrania, A. K., & Patel, S. S. (2016). *Emblica officinalis*: A Comprehensive Review on Phytochemistry and Pharmacology. *Journal of Ethnopharmacology*, 191, 200–218.
- Walter, M., & Gerade, H. A. (1970). Colorimetric method for determination bilirubin in serum and plasma. *Microchemical Journal*, *15*, 231–236.
- Yadav, S., Sharma, S., Sharma, K. D., Dhansu, P., Devi, S., Preet, K., Ahlawat, P., Kamboj, P., Rani, P., Rani, B., Kaushik, P., & Kumar, A. (2023). Selenium mediated alterations in physiology of wheat under different soil moisture levels. *Sustainability*, *15*(4), 1771. https://doi.org/10.3390/su15041771
- Zhang. (2023) . A Critical Review of Causal ReasoningBenchmarks for Large Language Models,, arXiv preprint (reviewed in

دورية فصلية علمية محكمة - تصدرها كلية التربية النوعية - جامعة عين شمس

الهيئة الاستشاريةللمحلة

i.د/ إبراهيم فتحى نصار (مصر) استاذ الكيمياء العضوية التخليقية كلية التربية النوعية - جامعة عين شمس

أ.د/ أسامة السيد مصطفى (مصر)

استاذ التغذية وعميد كلية التربية النوعية - جامعة عين شمس

أ.د/ اعتدال عبد اللطيف حمدان (الكويت)

استاذ الموسيقى ورنيس قسم الموسيقى بالمعهد العالي للفنون الموسيقية دولة الكويت

i.د/ السيد بهنسي حسن (مصر)

استاذ الإعلام - كلية الآداب - جامعة عين شمس

i.د / بدر عبدالله الصالح (السعودية)

استاذ تكنولوجيا التعليم بكلية التربية جامعة الملك سعود

1.1/ رامى نجيب حداد (الأردن)

استاذ التربية الموسيقية وعميد كلية الفنون والتصميم الجامعة الأردنية

1.1/ رشيد فايز البغيلي (الكويت)

استاذ الموسيقى وعميد المعهد العالي للفنون الموسيقية دولة الكويت

أ.د/ سامي عبد الرؤوف طايع (مصر)

استاذ الإعلام – كلية الإعلام – جامعة القاهرة ورنيس المنظمة الدولية للتربية الإعلامية وعضو مجموعة خيراء الإعلام بمنظمة اليونسكو

أ.د/ **سوزان القليني** (مصر)

استاذ الإعلام - كلية الأداب – جامعة عين شمس عضو المجلس القومي للمرأة ورنيس الهينة الاستشارية العليا للإتحاد الأفريقي الأسيوي للمرأة

i.د/ عبد الرحمن إبراهيم الشاعر (السعودية) استاذ تكنولوجيا التعليم والاتصال - جامعة نايف

i.د/ عبد الرحمن غالب المخلافي (الإمارات)

استاذ مناهج وطرق تدريس- تقنيات تعليم - جامعة الأمارات العربية المتحدة i.د/ عمر علوان عقيل (السعودية)

استاذ التربية الخاصة وعميد خدمة المجتّمع كلية التربية ـ جامعة الملك خالد

i.د/ ناصر نافع البراق (السعودية) استاذ الاعلام ورنيس قسم الاعلام بجامعة الملك سعود

i.د/ ناصر هاشم بدن (العراق)

استاذ تقنيات الموسيقى المسرحية قسم الفنون الموسيقية كلية الفنون الجميلة - جامعة البصرة

Prof. Carolin Wilson (Canada) Instructor at the Ontario institute for studies in education (OISE) at the university of Toronto

and consultant to UNESCO **Prof. Nicos Souleles** (Greece)

Multimedia and graphic arts, faculty member, Cyprus, university technology

(*) الأسماء مرتبة ترتيباً ابجدياً.

رئيس مجلس الإدارة

أ.د/ أسامة السيد مصطفى

نائب رئيس مجلس الإدارة

أ.د/ داليا حسن فهمي

رئيس التحرير

أ.د/إيمان سيدعلي هيئة التحرير

أ.د/ محمود حسن اسماعيل (مصر)

أ.د/ عجاج سليم (سوريا)

i.د/ محمد فرج (مصر)

أ.د/ محمد عبد الوهاب العلالي (المغرب)

i.د/ محمد بن حسين الضويحي (السعودية)

المحور الفني

د/أحمد محمد نحس سكوتارية التحرير

أ/ أسامة إدوارد أ/ليلي أشرف

أ/ محمد عبد السلام أ/ زينب وائل

المواسلات:

ترسل المراسلات باسم الأستاذ الدكتور/ رئيس التحرير، على العنوان التالى

٥ ٣٦ ش رمسيس - كلية التربية النوعية -جامعة عين شمس ت/ ۲۸۲۲۵۹۴ ۲۸۲۲۸۰۰

الموقع الرسم*ي*: <u>https://ejos.journals.ekb.eg</u>

البريد الإلكتروني:

egyjournal@sedu.asu.edu.eg الترقيم الدولى الموحد للطباعة : 6164 - 1687

الترقيم الدولى الموحد الإلكتروني : 2682 - 4353 تقييم المجلة (يونيو ٢٠٢٥) : (7) نقاط

معامل ارسيف Arcif (أكتوبر ٢٠٢٤) : (0.4167)

المجلد (١٣). العدد (٤٨). الجزء الخامس

أكتوبر ٢٠٢٥